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A nonlinear non-probabilistic
spot interest rate model
By D. Epstein and P. Wilmott

Mathematical Finance Group, Mathematical Institute, University of Oxford,
24–29 St Giles’, Oxford OX1 3LB, UK

We show how to use ‘uncertainty’ in place of the more traditional Brownian ‘random-
ness’ to model a short-term interest rate. The advantage of this model is principally
that it is difficult to show statistically that it is wrong. We discuss the pros and cons
of the model and show how to price and hedge various contracts.

Keywords: interest rate; fixed income; uncertainty; non-probabilistic model

1. Introduction

Tables 1 and 2 describe reasons why the traditional interest rate models may be
inadequate. There are two categories for these inadequacies, coming under the head-
ings of assumption (of the model) or consequence (of the model). By ‘traditional’
we mean the stochastic differential equation models, whether they be single or multi
factor, and whether or not they are from the Heath, Jarrow & Morton family.

Having dismissed all current models, can we replace them with something better?
The answer is a resounding ‘yes’ if our only concern is with validity of the model. A
more rigorous test is whether our model is ‘useful’.

Our model is the next step in the evolution of financial models that began with
Black & Scholes (1973). They presented a theory of options based on delta hedging
and no arbitrage. This foundation was adapted for interest rates (see Vasicek 1977)
and later generalized by Heath et al . (1992). The latter took the whole yield as an
input so that they correctly ‘model’ today’s discount factors. The main problem with
these models is in the accurate estimation of parameters. (Apabhai et al . (1995) show
just how unstable some of the interest rate parameters can be.) In the equity world,
Avellaneda et al . (1995) and Lyons (1995) showed how to incorporate uncertainty
in parameters to get around this problem. Their approach should not be applied
directly to the interest rate world because the variable that we choose to model is
the spot interest rate and is not a traded quantity. Taking ideas from all of the
approaches and modifying them to be applicable in the interest rate world leads to
the model presented in this paper.

2. The model

Our model is very simple. The independent variables are time t and a short-term
interest rate r. Other multi-factor models are possible but do not add significantly
to the accuracy of the model. We do not specify the process for r, only stating what
it is not allowed to do (see Epstein & Wilmott (1997, 1998) for more details).
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Table 1.

assumption comments

increments Assumed to be normally distributed. There is plenty of
statistical evidence that changes in interest rates are not
normally distributed. Typically, there are greater chances
of a small or very large move than are predicted by a
normal distribution. And, of course, financial variables
are known to be discontinuous.

known Parameters and functions must be known accurately. All
parameters/ financial parameters, such as volatility, are unstable. Most
functional models result in prices that are not robust to these parameters.
forms Practitioners have various ad hoc ways of getting around this

problem; some are sensible others are not.

yield curve fitting Functions are chosen so that yield curve is correct today.
The desire to dynamically hedge requires traditional models to
correctly price hedging instruments. These days this is done via
yield curve fitting. Impossible to justify theoretically, and rarely
tested empirically, this is the universal practice.

analytical solutions Most popular models are chosen for their tractability, i.e. that
simple contracts have simple formulae for their prices. Should
the desire for a nice formula drive the modelling process?

Table 2.

consequence comments

correlation between Rates are correlated across maturities. Although rates are
rates of different undoubtedly correlated across maturities, that correlation is
maturities notoriously unstable. Dynamic hedging is therefore not as

simple as the theory makes out. Even if dynamic hedging
were possible, the effects of discrete hedging are enormous.

linearity The value of any contract is independent of what it is hedged
with. Although this is financially nonsense it does make pricing
easy.

single price Almost all models result in a single price for a contract. The
concept of one ‘fair value’ is popular. However, given all the
uncertainty surrounding models and parameters, it is foolhardy
to believe that a value is correct in any but a theoretical sense.
And, of course, in practice there is always a spread on prices.

analytical solutions Most popular models are chosen for their tractability, i.e. that
simple contracts have simple formulae for their prices. Should
the desire for a nice formula drive the modelling process?
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Figure 1. A possible evolution of the short-term interest rate. See text for an explanation.

First of all, we restrict the spot interest rate to lie in a given band

r− 6 r 6 r+.

For instance, we may say that a rate of greater than 20% or less than 3% is not
attainable. To narrow down the possible evolution of r we further impose a constraint
on its growth rate

c− 6 dr
dt
6 c+.

The short-term interest rate is not allowed to grow or decay faster than 4% per
annum, for example. The above are two restrictions on the path of r. We will now
loosen the constraints, allowing the spot rate to jump discontinuously. We do this
by subtly changing the definition of r. Now r is a representative level for the spot
interest rate, but the real rate r′ lies no more than a distance ε away from r. We say
that the spot rate r′ shadows r. Thus

|r − r′| 6 ε.
This completes the spot rate model. Figure 1 shows a possible path for r′. Note that
very extreme behaviour is possible; behaviour not permitted by other models.

In this figure is shown an evolution of r and of r′. The latter, the spot interest rate,
is the volatile line, although the word ‘volatile’ does not have its usual, or indeed
any precise, meaning here. We have deliberately plotted a rather bizarre evolution,
demonstrating the rich structure that the model allows. Working from left to right,
we see (a) a steady rate increase followed by (b) a jump, (c) a further smooth
increase then followed by (d) a period during which the rate jumps discontinuously
every day from one extreme to another. There is a period (e) where the rate is
constant, followed by (f) a Brownian-looking spell with an upward trend. There is
then another Brownian-looking period but with a downward trend, (h) another rising
period, followed by (i) a low-volatility period. There is then (j) a very volatile time
with sinusoidal periodicity, followed by (k) a calmer spell.

Having set up the model, we now turn our attention to pricing various fixed-income
contracts. In the next section we derive the governing equation.
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3. The pricing equation

To set the scene, assume that we want to ‘value’ a contract consisting of a stream
of known cash flows arriving at given times in the future. These cash flows may
be positive or negative. Rather than find a single value for these cash flows today
we shall find a range of values from the worst up to the best. In practice, being
pessimistic or conservative, we will be more interested in the worst possible value.
We introduce V (r, t) as the worst value of the contract at time t, when the spot rate
(or rather the quantity which the real spot rate is shadowing) is r. The governing
equation for V comes from examining the smallest possible change in V from one
moment to the next, and then discounting at the spot rate.

The change in V from time t to time t+ dt is given by

V (r + dr, t+ dt)− V (r, t), (3.1)

where dr is the small increment in r during the time-step dt. We do not know the
amount of this increment until it happens. From a Taylor series expansion we find
that (3.1) becomes

∂V

∂t
dt+

∂V

∂r
dr. (3.2)

If we are being pessimistic, then we must ask what could be the worst incremental
value for our contract. We must therefore find the smallest value of (3.2) over all the
possible values for dr. Trivially, we find that the worst case is for dr to be as small
as possible if ∂V/∂r is positive, and as large as possible if ∂V/∂r is negative. Thus
the worst increment in V is (

∂V

∂t
+ c

(
∂V

∂r

)
∂V

∂r

)
dt,

where

c(x) =

{
c−, x > 0,
c+, x < 0.

Had we invested an amount V in a risk-free account, it would have grown by an
amount

r′V dt

during the same time-step. However, r′ is unknown. All we now is that it lies within
a certain distance of the shadow rate r. Being pessimistic, we assume that this
account grows by the largest amount, after all we are not investing in this risk-free
account. (So not only does our contract change by the least amount, we also missed
an excellent risk-free opportunity.) This increment is simply

(r + e(V ))V dt,

where

e(x) =

{
ε, x > 0,
−ε, x < 0.

The final stage in deriving the governing equation is to equate the worst-case incre-
ment of our contract with the best case obtained from investing an amount V in a
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‘risk-free’ account earning the spot rate. After dividing through by the time-step we
arrive at

∂V

∂t
+ c

(
∂V

∂r

)
∂V

∂r
− (r + e(V ))V = 0, (3.3)

where, to summarize,

c(x) =

{
c−, x > 0,
c+, x < 0

and e(x) =

{
ε, x > 0,
−ε, x < 0.

This is our governing pricing equation. It is first-order nonlinear hyperbolic. As
far as the mathematics and numerical analysis are concerned, the equation differs
greatly from the traditional second-order linear parabolic usually found in finance.

As we said earlier, the model predicts a range of values for a contract. The best
price is obtained by solving the same equation but with the inequalities reversed in
the definitions of c and e.

4. Consequences of the nonlinearity

The most important feature of (3.3) is that it is nonlinear. Nonlinearity of the pricing
equation results in the following properties of the prices of contracts.

(i) There is no such thing as ‘the’ price of a contract.

(ii) Long and short positions have different values.

(iii) The value of a portfolio of contracts is generally not the same as the sum of
the values of the individual components.

(iv) Hedging a ‘target’ contract with other market-traded contracts will change the
marginal value of the target contract.

(Some recent nonlinear credit risk models have other interesting properties as well
(Ahn et al . 1998).)

Because of the nonlinearity, the value of a portfolio of contracts is not necessarily
the same as the sum of the values of the individual components. This is a very
important point to understand: the value of a contract depends on what else is
in the portfolio. These two points are key to the importance of nonlinear pricing
equations: they give us a bid–offer spread on prices, and they allow optimal static
hedging.

One of the interesting points about nonlinear models is the prediction of a spread
between long and short prices. If the model gives different values for long and short,
then this is in effect a spread on prices. This can be seen as either a good or a bad
point. It is good because it is realistic; spreads exist in practice. It only becomes bad
when this spread is too large to make the model useful. The following idea of static
hedging for spread reduction was originally due to Avellaneda & Paras (1996).

Suppose that we want to sell a contract with some pay-off that does not exist
as a traded contract, an over-the-counter (OTC) contract. We want to determine
how low a price can we sell it for (or how high a price we can buy it for), with the
constraint that we guarantee that we will not lose money as long as our range for
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interest rates is not breached. By adding and subtracting traded contracts to and
from our OTC contract we can modify its marginal value, either decrease or increase
it, after allowing for the quoted prices of the traded contracts. So, generally speaking,
we expect a different OTC value if we choose a different static hedge portfolio. Of
course, we now ask if we get different values for a contract depending on what other
contracts we hedge it with, then is there a best static hedge? The answer is in the
affirmative. Details are contained in Epstein & Wilmott (1997, 1998).

One of the inevitable consequences of this optimization concerns the optimal static
hedging of a portfolio of traded contracts. If we try to price a traded contract in
isolation, we will get a spread of prices that differ greatly from the market prices.
However, if we then statically hedge this contract, we find that it is optimal to hedge
it one-for-one with the traded contract itself. In other words, it is optimal to close
the position and we find that the contract price is then the same as the market price.
Fitting or calibration is a consequence of the optimization, we do not have to fudge
any parameters to match market prices.

5. Examples

(a) Coupon-bearing bonds

Contracts with known fixed cash flows at prescribed dates, such as coupon-bearing
bonds, are the easiest contracts to value in the above framework. Each cash flow
is represented by a jump in the value of the contract across the payment date. For
example, if the holder of a contract receives an amount q on date T , then we have

V (r, T−) = V (r, T+) + q. (5.1)

Here T− means just before the payment is made and T+ just after. Financially, this
jump condition represents the loss of value of the contract after the coupon has been
paid.

Portfolios of coupon-bearing bonds are treated as the sum of all the individual
cash flows with a discontinuity in the contract value at each coupon date.

(b) Range notes

The range note pays a fixed amount, say $1, for every day that a specified interest
rate lies within a given range. If the relevant interest is a very short rate, then it
can be approximated by r′. In this case, the governing equation contains a simple
‘source’ term.

(c) Swaps

Vanilla swaps are an exchange of a fixed and a floating interest rate on a fixed
principal. They are easily incorporated into the framework by first decomposing them
into a series of zero-coupon bonds. This is a model-independent decomposition.

(d) Caps and floors, etc.

Caps and floors put a bound on periodic payments of interest, either bounding
them above or below. Each cap is made up of a series of caplets and each floor a
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series of floorlets. The cash flow in a caplet or floorlet is a function of a usually
short-term interest rate. If this interest rate can be approximated by the rate r, then
we can price caps and floors using equation (3.3) with similar jump conditions to
(5.1), the only difference being that the q is now a function of r.

(e) Index amortizing rate swaps (IARS)

The index amortizing rate swap differs from the vanilla swap in the amount of the
principal. In the vanilla swap the principal remains fixed at its initial agreed value. In
the IARS the level of the principal amortizes, decreases, according to some schedule
that depends on the level of an index at the time of the payment of the interest. The
index could be any quantity, but a particularly popular IARS has an index that is
the short-term interest rate itself.

Because the principal amortizes according to a sophisticated schedule, the IARS is
path dependent. Yet this path dependency is easily accommodated within the present
model. The trick to valuing this contract is to introduce a new state variable. This
new state variable is the current level of the principal, denoted by P . The value of
the IAR swap is V (r, P, t).

The variable P is deterministic and jumps to its new level at each resetting. Since
P is piecewise constant, the governing differential equation for the value of the swap
is, in the present model, still (3.3).

At each reset date there is an exchange of interest payments and an amortization
of the principal. If we use ti to denote the reset dates and rf for the fixed interest rate,
then the swap jumps in value by an amount (r − rf)P . Subsequently, the principal
P becomes g(r)P , where the function g(r) is the representation of the amortizing
schedule. When there is no band for the spot rate (ε = 0), we get the jump condition

V (r, P, t−i ) = V (r, g(r)P, t+i ) + (r − rf)P.

At the maturity of the contract there is one final exchange of interest payments, thus

V (r, P, T ) = (r − rf)P.

With a band for the interest rate, the jump condition is slightly more complicated.
The problem is nonlinear, and must be solved numerically. The structure of this

particular IAR swap is such that there is a similarity reduction; just look for a
solution of the form

V (r, P, t) = PH(r, t).

We are lucky that the similarity reduction is not affected by the nonlinearity.

(f ) Bond options

Options on bonds can also be priced within the framework. However, some inge-
nuity is required. It is very easy to price contracts for which cash flows are functions
of the spot interest rate. It is much harder to price contracts that are derivatives of
derivatives of the spot rate; bonds are spot rate derivatives and bond options are
therefore derivatives of derivatives.

Let us call the maturity of the underlying bond T and the expiry of the option T0.
We will probably want to hedge our bond option with other bonds so we must be able
to value a portfolio consisting of one option and any number of bonds. We introduce
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Table 3.

traditional models Epstein–Wilmott model

increments Assumed to be normally No probabilistic assumptions
distributed.2 are made about the distribution

of the changes in interest rates,
other than to disallow certain
types of movement.1

known Parameters and functions The model is set up so that
parameters/functional must be known accurately.2 parameters only affect the range
forms of possible contract values.1

yield curve fitting Functions are chosen so Optimal static hedging ensures
that yield curve is correct that theoretical and market
today.3 values are always identical.1

analytical solutions Most popular models There are very few analytical
are chosen for their solutions due to the
tractability.3 nonlinearity of the model.2

correlation between Rates are correlated across The concept of correlation and
rates of different maturities.3 delta hedging does not exist in
maturities this model.3

linearity The value of any contract The model is genuinely
is independent of what it nonlinear.3

is hedged with.2

single price Almost all models result The model gives ranges for the
in a single price for a prices of contracts, not a single
contract.3 value.1

1A property that is on balance an advantage of the model.
2A property that is on balance a disadvantage of the model.
3A property that has both advantages and disadvantages.

two functions U and V , both functions of r and t. The former is the value of the
whole portfolio if we do not exercise the option and the latter is the value if we do
exercise the option. The difference between the former and the latter problems is that
the former only has cash flows associated with the vanilla bonds, whereas the latter
has two extra sets of cash flows; one is the cash flow at the date T0, corresponding
to the strike of the option, and other cash flows corresponding to payments due to
the new bond into which we have exercised.

We solve (3.3) for both U and V , working backwards from the last cash flow date
until we get to T0. We therefore know how much the portfolio is worth in the worst
case for both possibilities, exercise or non-exercise. Since we have a choice whether
or not to exercise, we continue solving (3.3), but with

V (r, T0) = max(U(r, T0), V (r, T0))

as the final condition at time T0.
This example is of particular interest since it gives us an idea of difficulties that

may be encountered in pricing with the nonlinear worst-case model. For example, if
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we have n bond options in our portfolio, we must introduce 2n functions to allow for
all the possible combinations of exercise and non-exercise.

6. Comparison with traditional models

We summarize the advantages and disadvantages of the traditional models and that
described in this paper in table 3.

7. Conclusions

This paper was a summary of a new non-probabilistic paradigm for modelling short-
term interest rates. The model has many nice features, such as ranges for prices
and exact matching of market-traded prices. Prices are also more robust than in
traditional models. The nonlinearity which results in these nice properties also makes
the pricing of some contracts quite complicated. To get the full benefit of the model,
one must combine all contracts into one portfolio, but this will inevitably lead to
a computationally expensive problem. But to price contracts independently, and
therefore quickly, completely misses the point of the model.

D.E. thanks the Smith Institute and P.W. thanks the Royal Society for their financial support.
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